0
2019-01-31 50.208308
2019-02-28 50.623457
2019-03-31 56.203933
2019-04-30 NaN
2019-05-31 NaN
2019-06-30 117.727655
2019-07-31 62.273259
2019-08-31 49.054898
2019-09-30 55.612575
2019-10-31 54.187409
We can use the function pandas interpolate, and interpolate the data with different methods
dfIn.interpolate() - will fill noData with linear interpolation;
dfIn.interpolate(method='polynomial', order=3) - will fill noData with 3rd degree polinomial interpolation;
Result:
linear polinomial original
2019-01-31 50.208308 50.208308 50.208308
2019-02-28 50.623457 50.623457 50.623457
2019-03-31 56.203933 56.203933 56.203933
2019-04-30 76.711840 89.513986 NaN
2019-05-31 97.219748 124.233259 NaN
2019-06-30 117.727655 117.727655 117.727655
2019-07-31 62.273259 62.273259 62.273259
2019-08-31 49.054898 49.054898 49.054898
2019-09-30 55.612575 55.612575 55.612575
2019-10-31 54.187409 54.187409 54.187409