In the other hand, a multiple regression in Python, using the scikit-learn library - sklearn - it is rather simple.
import matplotlib.pyplot as plt import pandas as pd from sklearn.linear_model import LinearRegression # Importing the dataset dataset = pd.read_csv('data.csv') # separate last column of dataset as dependent variable - y X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values # build the regressor and print summary results regressor = LinearRegression() regressor.fit(X,y) print('Coefficients:\t','\t'.join([str(c) for c in regressor.coef_])) print('R2 =\t',regressor.score(X,y, sample_weight=None)) #plot the results if you like y_pred = regressor.predict(X) plt.scatter(y_pred,y) plt.plot([min(y_pred),max(y_pred)],[min(y_pred),max(y_pred)]) plt.legend() plt.show()